
A Connection Pattern-based Approach to Detect Network
Traffic Anomalies in Critical Infrastructures

Béla Genge1, Dorin Adrian Rusu2, Piroska Haller1
1“Petru Maior” University of Tîrgu Mureş, Romania,

2 VU University Amsterdam, The Netherlands
bela.genge@ing.upm.ro, d.rusu@student.vu.nl, phaller@upm.ro

ABSTRACT
Recent trends in Critical Infrastructures (CIs), e.g., power
plants and energy smart grids, showed an increased use of
commodity, off-the-shelf Information and Communication
Technologies (ICT) hardware and software. Although this
enabled the implementation of a broad palette of new fea-
tures, the pervasive use of ICT, especially within the core of
CIs, i.e., in Industrial Control Systems (ICSs), attracted a
new class of attacks in which cyber disturbances propagate
to the physical dimension of CIs. To ensure a more effective
detection of cyber attacks against the ICS of CIs, we have de-
veloped SPEAR, a systematic approach that automatically
configures anomaly detection engines to detect attacks that
violate connection patterns specific to ICSs. The approach is
validated by experimental scenarios including traffic traces
from real industrial equipment and real malware (Stuxnet).

Categories and Subject Descriptors
J.7 [Computers In Other Systems]: Industrial control;
C.2 [Computer-Communication Networks]: Security
and protection

General Terms
Critical Infrastructures, Security

Keywords
Industrial Control Systems, Anomaly Detection Systems

1. INTRODUCTION
The term Critical Infrastructure (CI) underlines the sig-

nificance of an infrastructure, which “if disrupted or de-
stroyed, would have a serious impact on the health, safety,
security or economic well-being of citizens” [10]. Although
this general definition embraces installations from several
industrial domains such as power generation & transmis-
sion, oil & gas industries, water & wastewater management,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EuroSec’14, April 13-16 2014, Amsterdam, Netherlands
Copyright 2014 ACM 978-1-4503-2715-2/14/04 ...$15.00.
http://dx.doi.org/10.1145/2592791.2592792

a common well-recognized factor amongst today’s Critical
Infrastructures is the adoption of commodity, off-the-shelf
Information and Communication Technologies (ICT) hard-
ware and software [3]. This particular trend is mainly a
consequence of the advantages of pervasive ICT, which en-
abled the implementation of new services and features such
as remote monitoring and maintenance, energy markets, and
the newly emerging smart grid.

Nevertheless, this technological shift from a completely
isolated environment to a “system of systems” integration
had a dramatic impact on the security of CIs. By leveraging
attack vectors that are commonly used to attack traditional
computer systems, e.g., phishing and USB key infections,
malware aimed at the disruption of critical infrastructure
systems have become effective cyber weapons [6, 7]. Such
attacks are usually targeted against the Industrial Control
Systems (ICSs), which are part of the core of CIs.

With the continuing increase in the level of sophistication
as well as in the number of yearly reported malware aimed
at ICSs, nowadays, the development of protective measures
to secure CIs is receiving considerable attention. As such,
recent advancements in the field of CI security highlighted
the applicability of anomaly detection techniques to effi-
ciently detect abnormal behavior [14, 13, 16, 18]. In fact,
anomaly-based intrusion detection is well-suited for scenar-
ios in which the encountered behavior is sufficiently narrow
to allow meaningful detection from the “normal”. Therefore,
in this paper we propose SPEAR, a systematic approach
consisting of a tool-suite aimed at modeling the topology
of ICSs and automatically generating Snort [17] detection
rules. SPEAR relies on the predictive behavior of connec-
tions between different ICS hosts in order to identify abnor-
mal packet exchanges. It builds on the assumption that the
core of CIs, i.e., its ICSs, once deployed, remains fixed over
long time periods, while eventual changes can have various
causes, such as the replication, relocation or decommission-
ing of equipment [14, 5]. Nevertheless, the same assumption
can be applied to communication flows between equipment,
which exhibit long-lasting patterns, called connection pat-
terns [15].

The mechanisms implemented within SPEAR highlight
two phases: modeling of ICS networks and generating anomaly
detection rules. In the first phase SPEAR provides a formal
language based on ns-2 [1] and a graphical interface to model
the architecture of ICSs as well as communication flows be-
tween equipment. The second phase provides an approach
that processes the ICS model and generates Snort anomaly
detection rules. In this paper we provide the mathematical

background behind SPEAR’s ability to model ICSs and to
generate ADS rules. Subsequently, we provide implementa-
tion details and experimental results proving that SPEAR is
more than a proof of concept and it is actually a tool-suite
available for the ICS community as open-source software
(http://www.ibs.ro/~bela/conpat.html).

The remainder of this paper is organized as follows: Sec-
tion 2 provides a background on ICSs and summarizes re-
lated work emphasizing the contributions of SPEAR; Section
3 provides the mathematical background of SPEAR and de-
scribes implementation details; Section 4 includes a detailed
analysis of SPEAR’s ability to detect attacks in several set-
tings; concluding remarks are presented in Section 5.

2. BACKGROUND AND RELATED WORK
Although their architecture may vary from one installa-

tion to another, the following components are known to be
specific to ICSs [11]: (i) SCADA Servers, also known as
Master Terminal Units (MTUs); (ii) Programmable Logi-
cal Controllers (PLCs) and Remote Terminal Units (RTUs);
and (iii) Human Machine Interfaces (HMI).

From an operational point of view, PLCs receive data from
sensors, elaborate a local actuation strategy, and send com-
mands to the actuators. PLCs also provide the data received
from sensors to MTUs and eventually execute the commands
that they receive. HMIs interact with MTUs and typically
implement a graphical interface used by human operators to
interact with the physical installation.

Although anomaly detection is a well-established field of
research, connection pattern-based ADSs have been only re-
cently proposed for ICSs. In the remaining of this section
we provide an overview of the main anomaly detection tech-
niques for ICSs available in the literature. The presentation
focuses on approaches addressing the cyber dimension of
ICSs, and in particular the communication infrastructure.
Nevertheless, we have found relevant research on ADSs em-
bodying the physical dimension of ICSs as well [13], which
we consider to be out of the scope of this paper.

The work of Garitano, et al. [12], explored the periodicity
of network traffic from a real SCADA system to construct
a network traffic prediction model. It was shown that in-
dustrial traffic exhibits a predictive behavior, which can be
efficiently explored in the construction of ADSs.

Goldenberg and Wool [14] used deterministic finite au-
tomata theory to build a detailed model of Modbus/TCP
industrial protocol. The model captures several details such
as source and destination IP addresses, Modbus Master and
Slave identifiers, message type, etc. The approach was val-
idated against a real industrial system, where it proved to
be highly sensitive, yet with a low false-positive rate.

Zhao, et al. [18], proposed dynamic time warping and
adaptive fuzzy C means to detect anomalies in industrial
traffic. The effectiveness of the approach was tested against
data originating from a real steel plant.

In the work of Barbosa, et al. [4], periodic traffic bursts
are associated to independent traffic flows and are carefully
monitored. The approach includes a learning period to mon-
itor and tune the parameters of the anomaly detection sys-
tem. Short-Time Fourier Transform is used to construct a
traffic spectogram, which is then used as ADS.

In their more recent work [5], Barbosa, et al., proposed a
similar approach to the one described in this paper. The ap-
proach identifies connection patterns between different hosts

and it constructs a list consisting of source, destination, pro-
tocol and server port, for each traffic flow. The approach in-
cludes a learning period during which traffic flows amongst
hosts are learned and are used in the detection phase. The
main concern proved to be the duration of the learning pe-
riod since certain connections do not happen regularly and
a long learning period might lead to misconfiguration due to
running attacks.

This review confirmed that the regularity exposed by in-
dustrial traffic and more specifically the availability of con-
nection patterns provides solid building blocks in the con-
struction of effective ADSs. Compared to state-of-the-art,
SPEAR brings several contributions: (i) it provides a math-
ematical model for ICS networks; (ii) it provides the math-
ematical tools for generating detection rules; and (iii) it
leverages well-established tools and detection engines, i.e.,
Snort, which makes it easily applicable to real installations.
Although SPEAR relies on expert knowledge to model the
ICS topology, this provides an attack-free “learning period”
and an effective detection of cyber attacks even in compro-
mised ICSs. Nevertheless, we realize the advantages of au-
tomated learning periods and from this perspective SPEAR
can also be seen as an extension or improvement of existing
approaches, where the manual modeling of ICSs could be
combined with an automated learning procedure.

3. PROPOSED APPROACH: SPEAR
This section outlines the basic building blocks of the pro-

posed approach, first covering a high level view of SPEAR,
and then sketching the details for each step, including mod-
eling of ICS networks and generating Snort detection rules.

3.1 Overview of SPEAR
Fundamentally, SPEAR is built around two phases: in

phase 1 the architecture of ICSs, including equipment, de-
tection nodes, networks, and communication flows, are mod-
eled; in phase 2 detection rules (for Snort) are generated.

In order to accomplish phase 1 SPEAR provides a graph-
ical user interface accompanied by a formal description lan-
guage to describe the architecture of ICSs and communica-
tion flows between equipment. The language is based on
an extension of the ns-2 scripting language and it provides a
natural approach to describe network topologies, equipment,
anomaly detection hosts, and communication flows.

In phase 2 SPEAR automatically generates detection rules
specific to each ADS identified in phase 1. At the time of this
writing SPEAR generates only Snort detection rules, since
Snort is one of the most widely deployed detection engines
available today. Nevertheless, other detection engines might
be taken into account in future developments.

3.2 Phase 1: Modeling ICSs
We model the typical architecture of an ICS with a tradi-

tional graph model G = (V,E), where V is the set of vertices
and E ⊆ V ×V is the set of pairs of vertices, known as edges.
Each vertex models typical ICS nodes such as PLC, HMI,
RTU, ADS as well as network components such as switch
and modem. Edges denote typical connections between net-
work components such as wired or wireless link.

Besides the network topology, SPEAR requires the def-
inition of traffic flows amongst ICS hosts. The set of all
node pairs including traffic flow between them is modeled
as T ⊆ V × V × {tcp, udp}. The first element of each tuple

http://www.ibs.ro/~bela/conpat.html

t = (s, d, k), t ∈ T denotes the traffic source, i.e., s, the sec-
ond element denotes the traffic destination, i.e., d, and the
third element denotes the protocol, i.e., the kind of traffic k.

This model provides a basic description of the network
topology and of the traffic flows required by SPEAR to gen-
erate rules that detect attacks violating connection patterns.
Nevertheless, the model can be further extended with more
expressive capabilities to enable the inclusion of additional
details, such as the type of industrial protocol, e.g., Modbus.

3.3 Phase 2: Generating ADS rules
The ICS model from phase 1 is processed by phase 2 in

order to automatically generate detection rules specific to
each ADS. Since traffic flow amongst two nodes does not
include information on intermediary nodes, phase 2 applies
a breadth-first search (BFS) algorithm to find the path from
source to destination. Then, it identifies each ADS along the
path and generates Snort rules to whitelist allowed traffic.

The identification of ADSs is based on the following two
assumptions: (i) if the ADS is connected to a switch found
along the path, we consider that the ADS can monitor all
packets passing through the switch by using typical switch
features such as Switched Port Analyzer (SPAN); and (ii) if
the ADS is directly connected to a firewall or software router
found along the path we assume that the ADS can monitor
all packets passing through such nodes.

Using the BFS algorithm we build A ⊆ V , denoting the
set of all ADSs and we define adspath(t) function to re-
turn all ADSs found on the path of a specific traffic flow.
Then, for each ADS a ∈ A we build the traffic set F a =⋃
{t|t ∈ T and a ∈ adspath(t)}.
Based on this set we now generate Snort detection rules

for TCP and UDP protocols. The basic structure of a Snort
rule includes two sides: the left, i.e., source, and the right,
i.e., destination. For instance, the following Snort rule will
generate an alarm message ALERT! for each TCP packet orig-
inating from any port of host 10.1.1.1 and having as desti-
nation any port of host 10.1.1.2:

alert tcp 10.1.1.1 any -> 10.1.1.2 any (msg: "ALERT!")

Although Snort rules can have a much more complex def-
inition, in SPEAR we use this basic, but effective approach
to define detection rules. Consequently, using the notation
introduced until now a Snort rule can be formalized as a
tuple (k∗, s∗, d∗, p∗s , p

∗
d,m), where: k∗ ∈ {tcp, udp}∗ denotes

the type of protocol(s) to which the rule applies; s∗ and d∗

denote several source and destination IP addresses, respec-
tively; p∗s and p∗d denote several source and destination port
numbers, respectively; and m is the generated message. We
use Ra to denote the set of all rules for a specific ADS a ∈ A
and we use ⇒ as an operator to store rules in Ra.

Intuitively, most of the components of each tuple (i.e.,
k∗, s∗ and d∗) can be identified from the basic ICS model
introduced in the previous sub-section. However, in it’s cur-
rent version SPEAR does not distinguish between different
port numbers and we use anyp to denote the set of all port
numbers. For m we assume a constant message, which can
be easily replaced to generate a more elaborate alarm.

For TCP we assume a bidirectional exchange of pack-
ets. This means that for each traffic flow defined in the
ICS model, rules are generated for both source and desti-
nation hosts. Therefore, for each ADS a ∈ A and for each
host v ∈ V r A that is monitored by a we build the set

Figure 1: Example ICS architecture modeled with
SPEAR’s Emulab Client GUI.

of hosts that exchange TCP packets with v, denoted by
Ha

v =
⋃
{v′|(v, v′, tcp) ∈ F a or (v′, v, tcp) ∈ F a}. Then,

the following Snort rule is generated, which will issue alarms
if v sends a packet to hosts outside Ha

v :

Rule1: ({k}, {v}, NOT (Ha
v), anyp, anyp, ALERT!) ⇒ Ra,

where NOT (Ha
v) is a function returning the set of all hosts,

i.e., all IP addresses, outside Ha
v . As shown in the remaining

of this section, this rule also applies to UDP, and therefore
k ∈ {tcp, udp}.

A particular case of TCP, which also applies to other pro-
tocols such as UDP, is when a specific host does not exchange
any TCP packets. In such scenarios Ha

v is empty and the
following two rules are generated to raise alerts for any TCP
or UDP packet sent/received by v:

Rule2: ({k}, {v}, NOT ({v}), anyp, anyp, ALERT!) ⇒ Ra,

Rule3: ({k}, NOT ({v}), {v}, anyp, anyp, ALERT!) ⇒ Ra.

For UDP, the traffic flow can be unidirectional or bidi-
rectional. The procedure for generating Snort rules is sim-
ilar to the one described for TCP and it boils down to the
construction of Ha

v ⊂ V ∗. However, in this case Ha
v =⋃

{v′|(v, v′, udp) ∈ F a}, which means that if bidirectional
UDP traffic is modeled, a second tuple (v′, v, udp) ∈ F a

must be added. Therefore, in the bidirectional setting Rule1
is applied twice (once for each direction), while in the uni-
directional setting both Rule1 and Rule2 are applied.

Finally, we must ensure that the two protocols which are
governed by SPEAR, i.e., TCP and UDP, are running only
on the hosts that have been modeled. Therefore, the follow-
ing rule is generated for TCP and UDP as well:

Rule4: ({k}, {NOT (V)}, {NOT (V)}, anyp, anyp, ALERT!) ⇒ Ra.

3.4 Implementation Details
In order to provide an intuitive tool to model ICSs, in

SPEAR we have adopted and extended the Emulab Client
GUI [8] (ECG). ECG is a Java-based front-end to the Em-
ulab testbed and was developed within the Emulab project.

The original ECG generates network topology descrip-
tions in an extension of the ns-2 language [9] and provides
an interface with the ability to model four entities: node,
link, switch, and modem. Conversely, SPEAR brings sev-
eral extensions to ECG to support typical equipment found
in ICS. Thus, SPEAR provides additional graphical objects
to model ICSs, while relying on the same mechanism to gen-
erate ns-2-based descriptions of network topologies.

An example ICS modeled with ECG is presented in Fig-
ure 1. The topology includes two networks: (i) the control
network comprising of three PLCs and one ADS; and (ii) the
process network comprising of one HMI, one MTU and one
ADS. In this example we have defined TCP traffic between
MTU0 and three PLCs and between MTU0 and HMI0. The
following ns-2 script (partially shown) was generated:

HMI0

MTU0

Switch1

IDS1

firewall0
Switch0

PLC0 PLC1

PLC2

IDS0

Figure 2: Example ICS graph representation.

set ns [new Simulator]
Nodes
set MTU0 [$ns node]
tb-set-node-os $MTU0 ncSCADA-MTU
Lans
set Switch0 [$ns make-lan "$firewall0 $IDS0 $PLC0 ..."]
Event Agents
set tg0 [new Application/Traffic/CBR]

As illustrated by the previous listing, the generated ICS
description is mostly based on the ns-2 language. Com-
mands starting with tb-, i.e., testbed, have been defined for
the Emulab project in order to express specific requirements
of emulation testbeds. Once the ICS topology is modeled by
SPEAR’s ECG, it is forwarded to a Python-based script to
automatically generate Snort rules. As shown in Figure 2,
the graph constructed in phase 2 has a similar structure
to the original network topology. Thus, phase 2 identifies
two detection nodes, depicted as IDS0 and IDS1, and builds
T , A, and F . Then, it generates Snort detection rules for
each of the two ADSs. To illustrate the rules generated by
SPEAR, we provide the following listing for IDS1:

ipvar $MTU0 [10.1.1.2]
...
1. alert tcp $MTU0 any -> ![$PLC0,$PLC1,$PLC2,$HMI0] any (...)
2. alert tcp ![$PLC0,$PLC1,$PLC2,$HMI0] any -> $MTU0 any (...)
3. alert tcp $HMI0 any -> !$MTU0 any (...)
4. alert tcp !$MTU0 any -> $HMI0 any (...)
5. alert tcp $firewall0 any -> !$firewall0 any (...)
6. alert tcp !$firewall0 any -> $firewall0 any (...)
7. alert tcp ![$MTU0 $PLC0 ...] any -> ![$MTU0 $PLC0 ...] any (...)
8. alert udp any any -> any any (...)

As depicted in the above listing, the first two rules were
generated by Rule1 in order to raise alerts if MTU0 ex-
changes TCP packets with nodes other than PLC0, PLC1,
PLC2, and HMI0. The third and fourth rules were gener-
ated with the same rule in order to raise alarms if HMI0
exchanges packets with nodes other than MTU0.

The next two rules raise alarms if firewall0 sends/receives
any TCP packets. These were generated by Rule2 and Rule3
since we did not define any TCP traffic between firewall0
and other nodes. The last two rules will raise alarms on any
TCP packet that was not issued by a modeled host and on
any UDP packet, since UDP traffic was not defined for this
ICS. The two rules were generated by Rule4.

4. EXPERIMENTAL ASSESSMENT
This section summarizes the results concerning the as-

sessment of SPEAR from several perspectives. First, we
illustrate SPEAR’s ability to detect attacks in traffic traces
captured from a laboratory installation including real equip-
ment and real malware. Then, we evaluate its ability to
detect attacks in traffic traces generated by simulations. Fi-
nally, we measure the execution time of SPEAR’s rule gen-
erator script in order to evaluate its scalability.

PLC0

HMI0

Switch0

IDS0

Malware0
RNRP0

MMS/TCP

RNRP/UDP

TCP
scan

(a)

0

100

200

300

400

1 501 1001 1501 2001 2501 3001

Th
ro

u
gh

p
u

t
(K

b
p

s)

Time (s)

MMS+RNRP

TCP Scan

(b)

0

200

400

600

800

1000

1 501 1001 1501 2001 2501 3001

N
u

m
b

e
r

o
f

Sn
o

rt
 a

le
rt

s

Time (s)

(c)

Figure 3: Experimental setting consisting of real in-
dustrial equipment: (a) ICS topology; (b) network
traffic; and (c) alarms raised by Snort.

4.1 Detecting Attacks in Real Industrial Traces
We have set-up an experiment consisting of a PLC and

HMI software from ABB. On the HMI node we hosted MTU
software from ABB to ensure communication with PLC through
Manufacturing Message Specification (MMS) protocol over
TCP. During the experiment we noticed that the HMI also
sends Redundant Network Routing Protocol (RNRP) pack-
ets over UDP to a specific RNRP router. Although the
router was not present in this experiment, the feature re-
mained active from previous configurations. Consequently,
in order to reflect the correct behavior of HMI, we have mod-
eled an RNRP router and we defined unidirectional UDP
traffic between HMI and RNRP router. Finally, we added a
generic host to the experiment to denote a compromised,
malicious node, on which we ran nmap software. Then,
we launched several TCP scans against the PLC, including
TCP-SYN, TCP-NULL, TCP-FIN, and TCP-XMAS scans.
The experiment topology is illustrated in Figure 3 (a).

In order to test SPEAR’s ability to detect the attack, we
modeled this topology using SPEAR’s ECG software and we
have generated Snort rules with SPEAR’s rule generator.
Then, we have added a detection node to the experiment
and we have configured Snort to run the generated rules.

The network traffic throughput including MMS and RNRP
are illustrated in Figure 3 (b). Here we have also depicted
the traffic generated by nmap, where the first, highly visible
burst is due to the TCP-SYN scan. This is then followed
by smaller traffic bursts depicting the throughput of TCP-
NULL, TCP-FIN, and TCP-XMAS scans.

As shown in Figure 3 (c), with the rules generated by
SPEAR, Snort is able to accurately detect the implemented
attack. Since the attack violates the connection patterns
defined for this topology, Snort generates an alert message
for each packet that matches a specific rule.

Although the attack is already visible from the network
traffic throughput depicted in Figure 3 (b), we underline
the fact that by using connection patterns, detection engines
can be highly efficient and can detect attacks relying even
on one single packet. However, an attacker can still exploit
connection patterns defined for each compromised host. For
instance, in the scenario beforehand if the attacker compro-
mises HMI0, then he/she can send UDP packets to RNRP0

PC3

Switch0

IDS0

PC1

PC0Deliberate
infection with
W32/Stuxnet.A

PC2

Gateway0

Propagation through
SMB vulnerabilityTest Internet

connectivity

(a)

0

700

1400

2100

2800

3500

1 1001 2001 3001 4001 5001

Th
ro

u
gh

p
u

t
(K

b
p

s)

Time (s)

Stuxnet propagation

(b)

0

1

2

3

4

1 1001 2001 3001 4001 5001

N
u

m
b

e
r

o
f

Sn
o

rt
 a

le
rt

s

Time (s)

Alert triggered by
Stuxnet DNS requests

(c)

Figure 4: Experimental setting including infection
with Stuxnet malware: (a) ICS topology; (b) net-
work traffic; and (c) alarms raised by Snort.

and TCP packets to PLC0, which will not be detected. Nev-
ertheless, typical malware (also the case of Stuxnet [6]) will
try to spread, to compromise other stations and to initiate
connections with other hosts as well. In such cases SPEAR
will issue several alarms, even in the presence of low-rate
attacks, which might not be detected by other approaches.

4.2 Detecting Attacks Involving Real Malware
The main concern regarding the previous experiment is

that the simplicity of the synthetic attack implemented through
nmap might exhibit significant deviations from the behavior
of real malware. In fact, real malware might exploit regu-
lar network traffic to hide its presence. Therefore, we have
tested SPEAR and its ability to detect the presence of real
malware in a network setting involving infected computers.

For this experiment we configured a network with four
hosts running Windows XP SP2 and we deliberately infected
one of the hosts with Stuxnet malware (W32/Stuxnet.A). We
monitored the network traffic and we verified that Stuxnet
“installed” itself successfully on the infected host. Although
the experiment did not include software or control hardware
from Siemens, network traces showed that Stuxnet exploited
vulnerability MS08-067 within SMB protocol (used for shar-
ing files and other resources between computers) and copied
itself over the network to the other hosts. Additionally,
Stuxnet tested Internet connectivity by trying to connect
to www.windowsupdate.com and www.msn.com. The experi-
ment setting is illustrated in Figure 4 (a).

Next, we used SPEAR to construct the ICS model and
we defined regular TCP traffic between the four hosts (MS
Windows SMB traffic). Since the Windows hosts did not
require a DNS server, we did not model such traffic.

The exact moment when Stuxnet copies itself onto another
host is clearly visible in Figure 4 (b). Since Stuxnet exploits
vulnerabilities in SMB protocol, with the rules generated by
SPEAR, Snort does not raise alarms when Stuxnet propa-
gates to other hosts. Nevertheless, Snort raises alarms for
each DNS request issued by Stuxnet, since this traffic was
not defined in the network model (Figure 4 (c)). Although
not visible in these figures, similar DNS queries are sent from
the moment the first host was infected. This underlines once
again the effectiveness of the proposed approach which can
trigger alarms on a per-packet basis.

HMI0

HMI1 MTU0

IDS0

MTU1

historian0

HMI2

Node0 Node1

RAP0

RAP1

switch0

firewall0

Router0

firewall1

PLC0

PLC1 PLC2

PLC3

PLC4

PLC5

PLC6

PLC7

IDS1

switch1

(a)

0

200

400

600

800

1000

1 1001 2001 3001 4001 5001 6001 7001

Th
ro

u
gh

p
u

t
(K

b
p

s)

Time (s)

Regular Malicious

(b)

0

50

100

150

200

1 1001 2001 3001 4001 5001 6001 7001

N
u

m
b

e
r

o
f

Sn
o

rt
 a

le
rt

s

Time (s)

(d)

0

500

1000

1500

2000

2500

3000

1 1001 2001 3001 4001 5001 6001 7001

Th
ro

u
gh

p
u

t
(K

b
p

s)

Time (s)

Regular Malicious

(c)

0

50

100

150

200

250

300

1 1001 2001 3001 4001 5001 6001 7001

N
u

m
b

e
r

o
f

Sn
o

rt
 a

le
rt

s

Time (s)

(e)

Figure 5: Experimental setting consisting of a simu-
lated topology: (a) ICS topology; (b) and (c) regular
and malware traffic throughput in setting 1 and 2,
respectively; and (d) and (e) the number of alarms
raised by Snort in setting 1 and 2, respectively.

4.3 Detecting Attacks in Simulated Traces
In order to test the efficiency of SPEAR with larger topolo-

gies we have recreated in a simulated environment a typical
ICS topology including two networks: control network and
process network. For each network we have defined around
10 nodes, regular UDP traffic between several nodes and
between the two networks. Subsequently, we have defined
malicious UDP traffic between eight nodes. Then, we used
SPEAR’s ability to generate Snort rules. The topology used
in this scenario is shown in Figure 5 (a). In order to ensure
clarity of presentation, traffic lines (regular and malicious)
were excluded from this figure.

Within this scenario we also illustrate the effectiveness of
connection patterns in the presence of low-rate attacks. As
such, we defined two settings: in setting 1 the throughput of
the attack is configured to a similar rate as the regular traffic,
while in setting 2 the throughput of the attack is around 30
times lower than the average throughput of regular traffic.

In order to test Snort’s ability to detect attacks in both
settings, we recreated this ICS topology with the recent Net-
work Simulator version 3, i.e., ns-3 [2]. Then, we generated
packet capture files and we ran Snort with the rules gen-
erated by SPEAR. As shown in Figure 5 (b), in setting 1
the attack is clearly visible. Its throughput reaches almost
800Kbps, which is similar to traffic peaks exhibited by reg-
ular traffic. For each attack packet that is detected, Snort
issues an alarm (see Figure 5 (d)). On the other hand, the
attack in setting 2 is less obvious. As shown in Figure 5 (c),
the throughput of regular traffic reaches almost 2500Kbps,
while the maximum attack throughput is 60Kbps. Never-
theless, Snort is able to efficiently detect irregular traffic,
i.e., malicious, and raises alarms accordingly (Figure 5 (e)).

www.windowsupdate.com
www.msn.com

0

0.05

0.1

0.15

0.2

0.25

10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 t
im

e
 (

s)

Number of ICS networks

Total BFS algorithm

Figure 6: Execution time of rule generator.

4.4 Execution Time of Rule Generator Script
We aim to determine the execution time of the rule genera-

tor script with large ICS topologies. Therefore, we generated
a total of 10 different ICS topologies, starting with a topol-
ogy of 10 networks and gradually increasing the number of
networks for each topology by 10. Each network included
10 hosts and one ADS; the largest topology included 100
networks with a total of 1000 hosts and 100 ADSs. Traffic
generators were configured between all components of each
network and between all networks.

As shown in Figure 6, the execution time of the imple-
mented rule generator (in Python) exhibits a linear trend.
For instance, the script executes under 20ms for 10 networks
and under 200ms for 100 networks. For each topology the
calculation of the shortest path within the graph (BFS) takes
the longest time to execute. Overall, the results are a clear
demonstration of the applicability of the script to large-scale
infrastructures. Since the execution takes under 200ms even
for a topology including 1000 hosts, we can consider that
additional extensions, e.g., complex rules, are also feasible.

5. CONCLUSIONS
As we have shown, the definition of connection patterns

between different hosts in the core of CIs, i.e., ICSs, provides
an effective approach for implementing ADSs. The learning
phase present in other approaches, which might lead to un-
detected attacks, is replaced by expert knowledge and a for-
mal language for describing ICS topology. The ICS model is
then used to automatically generate a set of detection rules
for each ADS. Detection rules are specifically generated for
Snort, which lead to the detection of attacks that violate the
modeled connection patterns. The experiments from Section
4 demonstrated the applicability of SPEAR in real scenarios
and on large ICS topologies.

The main advantages that SPEAR brings over state-of-
the-art is that it automatizes the rule generation procedure
for ICSs and a well-established detection engine, i.e., Snort,
by employing available open-source tools. Nevertheless, the
authors are aware of SPEAR’s limitations as well. In fact,
we intend to expand the set of supported protocols in order
to provide more expressive modeling capabilities for indus-
trial protocols. Furthermore, we realize the benefits of auto-
mated topology learning techniques, which are also planned
to be integrated in SPEAR. Nevertheless, as shown in [5],
automated learning procedures must be carefully planned
since these might accidentally validate malicious traffic.

6. ACKNOWLEDGMENTS
This research was supported, in part, by a Marie Curie

FP7 Integration Grant within the 7th European Union Frame-
work Programme.

7. REFERENCES
[1] ns-2 network simulator.

http://www.isi.edu/nsnam/ns/, 2006.

[2] ns-3 network simulator. https://www.nsnam.org/,
2014.

[3] R. Anderson and R. Hundley. The implications of
COTS vulnerabilities for the DoD and critical U.S.
infrastructures. RAND Report, P-8031, 1998.

[4] R. Barbosa, R. Sadre, and A. Pras. Towards
periodicity based anomaly detection in SCADA
networks. In Proceedings of 2012 IEEE 17th
International Conference on Emerging Technologies &
Factory Automation, pages 1–4, September 2012.

[5] R. Barbosa, R. Sadre, and A. Pras. Flow whitelisting
in SCADA networks. International Journal of Critical
Infrastructure Protection, 6(3-4):150–158, 2013.

[6] T. Chen and S. Abu-Nimeh. Lessons from Stuxnet.
Computer, 44(4):91–93, April 2011.

[7] CrySiS Lab. Flame - a complex malware for targeted
attacks, May 2012.

[8] Emulab project. Emulab client GUI.
https://www.emulab.net/netlab/client.php3,
November 2005.

[9] Emulab project. NS command extensions.
https://wiki.emulab.net/wiki/nscommands, 2014.

[10] European Commission. Communication from the
Commission to the Council - Critical Infrastructure
Protection in the fight against terrorism.
COM(2004)0702., October 2004.

[11] B. Galloway and G. Hancke. Introduction to industrial
control networks. Communications Surveys Tutorials,
IEEE, 15(2):860–880, Second 2013.

[12] I. Garitano, C. Siaterlis, B. Genge, R. Uribeetxeberria,
and U. Zurutuza. A method to construct network
traffic models for process control systems. In Emerging
Technologies Factory Automation (ETFA), 2012 IEEE
17th Conference on, pages 1–8, Sept 2012.

[13] B. Genge, C. Siaterlis, and G. Karopoulos. Data
fusion-based anomay detection in networked critical
infrastructures. In Dependable Systems and Networks
Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP
Conference on, pages 1–8, June 2013.

[14] N. Goldenberg and A. Wool. Accurate modeling of
Modbus/TCP for intrusion detection in SCADA
systems. International Journal of Critical
Infrastructure Protection, 6(2):63–75, 2013.

[15] E. Pleijsier. Towards anomaly detection in SCADA
networks using connection patters. In 18th Twente
Student Conference on IT, pages 1–6, January 2013.

[16] F. Schuster, A. Paul, and H. Konig. Towards learning
normality for anomaly detection in industrial control
networks. In Emerging Management Mechanisms for
the Future Internet, volume 7943 of Lecture Notes in
Computer Science, pages 61–72. Springer Berlin
Heidelberg, 2013.

[17] Sourcefire. Snort. http://www.snort.org/, 2014.

[18] J. Zhao, K. Liu, W. Wang, and Y. Liu. Adaptive fuzzy
clustering based anomaly data detection in energy
system of steel industry. Information Sciences,
259(0):335–345, 2014.

	Introduction
	Background and Related Work
	Proposed Approach: SPEAR
	Overview of SPEAR
	Phase 1: Modeling ICSs
	Phase 2: Generating ADS rules
	Implementation Details

	Experimental Assessment
	Detecting Attacks in Real Industrial Traces
	Detecting Attacks Involving Real Malware
	Detecting Attacks in Simulated Traces
	Execution Time of Rule Generator Script

	Conclusions
	Acknowledgments
	References

