
A fault tolerant, peer-to-peer

replication network

Radu Potop

Otto Iovanici

1



Table of contents

Introduction                                                                                                                                     .................................................................................................................................  3  

Evolution                                                                                                                                         .....................................................................................................................................  3  

Centralized node for synchronizing                                                                                            ........................................................................................  4  

Decentralized synchronizing network                                                                                         .....................................................................................  4  

Current architecture                                                                                                                     .................................................................................................................  4  

Architecture and applications                                                                                                          ......................................................................................................  4  

Secure Shell (SSH)                                                                                                                      .................................................................................................................  5  

Unison (file synchronizer)                                                                                                          ......................................................................................................  5  

Cron                                                                                                                                             .........................................................................................................................................  6  

Bash                                                                                                                                             .........................................................................................................................................  6  

Components roles and features                                                                                                       ..................................................................................................  7  

SSH                                                                                                                                             .........................................................................................................................................  7  

Unison                                                                                                                                         .....................................................................................................................................  8  

Cron                                                                                                                                             .........................................................................................................................................  9  

Bash                                                                                                                                           .......................................................................................................................................  10  

Use cases and scenario                                                                                                                  ..............................................................................................................  10  

The first example                                                                                                                      ..................................................................................................................  10  

Second example                                                                                                                        ....................................................................................................................  12  

Conclusions                                                                                                                                   ...............................................................................................................................  15  

Future developments                                                                                                                     .................................................................................................................  15  

References                                                                                                                                     .................................................................................................................................  16  

Glossary                                                                                                                                        ....................................................................................................................................  16  

2



Introduction

A peer-to-peer,  commonly  abbreviated  to  P2P,  is  any distributed  network architecture 
composed of participants that make a portion of their resources (such as processing power, 
disk storage or network bandwidth) directly available to other network participants, without 
the need for central coordination instances (such as servers or stable hosts)1. Peers are both 
suppliers and consumers of resources, in contrast to the traditional client-server model where 
only servers supply, and clients consume.

Peer-to-peer systems often implement an Application Layer overlay network on top of the 
native or physical network topology. Such overlays are used for indexing and peer discovery. 
Content is typically exchanged directly over the underlying Internet Protocol (IP) network. 
Anonymous peer-to-peer  systems are an exception,  and implement  extra  routing layers to 
obscure the identity of the source or destination of queries.

 

Fig. 1 

P2P networks are typically  used for connecting nodes via largely ad hoc connections. 
Sharing  content  files  containing  audio,  video,  data  or  anything  in  digital  format  is  very 
common, and real time data, such as telephony traffic, is also passed using P2P technology2.

Evolution

The system undergone three major steps of development.

Centralized node for synchronizing

It  started similar  to a centralized network where all  computers were connected to one 
central node. Any peers had to authenticate and synchronize with the master. It was a static 
implementation where the central computer was holding the IP list of every peer as well as the 
content that had to be synchronized.

1 Rüdiger Schollmeier, A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer 
Architectures and Applications, Proceedings of the First International Conference on Peer-to-Peer Computing, 
IEEE (2002)

2 http://en.wikipedia.org/wiki/Peer-to-peer

3



There were two major downsides:

a) One  was  that  every  computer  would  have  synchronize  with  the  master,  and  this 
depended on the bandwidth in case of larger files;

b) Second there had to be a central computer up and running in order to benefit from the 
service provided by this implementation.

Decentralized synchronizing network

This was a similar approach with the difference that the master computer was holding 
only  the  IP  list  of  the  computers  that  could  connect  for  synchronizing.  One  could  not 
synchronize the content of two computers if any of those was missing from the list. As in the 
previous situation both computers had to access the master for identification before they could 
exchange content.

But what about a network that has no internet connection?

Current architecture

This problem was resolved considering that one user doesn’t necessarily need internet 
connection  wherever  he is.  He may want  to synchronize  content  from his  notebook with 
another computer that has no internet access at the moment. The authentication cannot be 
done in this case.

We choose to authenticate between the computers that need synchronization. Initially each 
computer has to be configured manually with authorization keys and IP addresses. There is a 
Bash script that runs periodically through Linux cron in order to prevent large amount of data 
being synchronized at once.

Architecture and applications

The applications and components used to develop the system are: SSH, Unison, Linux 
cron daemon and a Bash console script. We are going to discuss each of them in detail as 
following.

Secure Shell (SSH) 

SSH is  a  network  protocol  that  allows  data  to  be  exchanged  using  a  secure  channel 
between two networked devices.3 Used primarily on Linux and Unix based systems to access 
shell  accounts,  SSH was designed as a  replacement  for Telnet  and other  insecure remote 

3 RFC 4252

4



shells,  which  send  information,  notably  passwords,  in  plaintext,  leaving  them  open  for 
interception.4 The encryption used by SSH provides confidentiality and integrity of data over 
an insecure network, such as the Internet.

SSH uses public-key cryptography to authenticate  the  remote  computer  and allow the 
remote computer to authenticate the user, if necessary.

SSH is typically used to log into a remote machine and execute commands, but it also 
supports tunneling, forwarding TCP ports and X11 connections; it can transfer files using the 
associated SFTP or SCP protocols. SSH uses the client-server model.

The standard TCP port 22 has been assigned for contacting SSH servers.

An SSH client program is typically used for establishing connections to an SSH daemon 
accepting  remote  connections.  Both  are  commonly  present  on  most  modern  operating 
systems, including Mac OS X, Linux, FreeBSD, Solaris and OpenVMS. Proprietary, freeware 
and open source versions of various levels of complexity and completeness exist.5

Unison (file synchronizer)

Unison is a file synchronization program. It is used for synchronizing files between two 
directories, either on one computer, or between a computer and another storage device (e.g. 
another computer, or a removable disc). It runs on Unix-like operating systems (including 
Linux, Mac OS X, and Solaris), as well as on Windows.

• It runs on many operating systems, and can synchronize files across platforms, so that 
for instance a Windows laptop may be synchronized with a Unix server.

• It detects 'conflicts' where a file has been modified on both sources, and displays these 
to the user

• It communicates over the TCP/IP protocol so that any two machines with an internet 
connection  can  be synchronized.  This  also  means  that  the  data  transferred  can  be 
secured by tunneling over an encrypted SSH connection.

• It uses the rsync algorithm developed by Andrew Tridgell. This algorithm transfers 
only the parts of a file that have changed, and so is faster than copying the whole file.

• It  is  designed  to  be  robust  in  the  event  of  a  program  or  system  crash  or  a 
communication failure.

• It is open-source.

4 http://www.serverwatch.com/news/print.php/3551081

5 http://en.wikipedia.org/wiki/Secure_Shell

5



• It is written in the Objective Caml language.

File  synchronization  tools  such  as  Unison  are  similar  to  version  control  tools  (CVS, 
Subversion, etc.), distributed filesystems (Coda, etc.), and mirroring utilities (rsync, etc.), in 
that all these attempt to keep sets of files synchronized. However file synchronization tools 
can deal with modifications to both versions of the directory structure, without the overhead 
of version control.

Cron

Cron is a time-based job scheduler in Unix-like computer operating systems. The name 
cron comes from the word chronograph (a time-piece). Cron enables users to schedule jobs 
(commands or shell scripts) to run automatically at a certain time or date. It is commonly used 
to automate system maintenance or administration, though its general purpose nature means 
that it can be used for other purposes, such as connecting to the Internet and downloading 
email.6

Cron is driven by a crontab,  a configuration file that  specifies shell  commands to run 
periodically on a given schedule.

Bash

Bash is a free software Unix shell written for the GNU Project. Its name is an acronym 
which stands for Bourne-again shell.7 The name is a pun on the name of the Bourne shell (sh), 
an early and important Unix shell written by Stephen Bourne and distributed with Version 7 
Unix circa 1978,8 and the phrase "born again." Bash was created in 1987 by Brian Fox. In 
1990 Chet Ramey became the primary maintainer.9

Bash is the shell for the GNU operating system from the GNU Project. It can be run on 
most Unix-like operating systems. It is the default shell on most systems built on top of the 
Linux kernel as well  as on Mac OS X and Darwin.  It has also been ported to Microsoft 
Windows  using  Subsystem  for  UNIX-based  Applications  (SUA),  or  POSIX  emulation 
provided by Cygwin and MSYS. It has been ported to MS-DOS by the DJGPP project and to 
Novell NetWare.

6 http://en.wikipedia.org/wiki/Cron

7 C Programming by Al Stevens, Dr. Dobb's Journal, July 1, 2001

8 Fresh Faces by Rosalyn Lum, Dr. Dobb's Journal, June 1, 2005

9 Ramey, Chet (1994-08-01). "Bash - the GNU shell (Reflections and Lessons Learned)". Linux Journal. 
http://www.linuxjournal.com/article/2800#N0xa50890.0xb46380. Retrieved 2008-11-13.

6



The Bash command syntax is a superset of the Bourne shell command syntax. The vast 
majority  of Bourne shell  scripts  can be executed  by Bash without  modification,  with the 
exception of Bourne shell scripts stumbling into fringe syntax behavior interpreted differently 
in Bash (nested parentheses broke under Bash, for example, in the Mozilla startup script some 
years back, or attempting to run a system command matching a newer bash builtin, etc. Bash 
command syntax includes ideas drawn from the Korn shell (ksh) and the C shell (csh) such as 
command line  editing,  command history,  the directory  stack,  the $RANDOM and $PPID 
variables,  and  POSIX  command  substitution  syntax  $(…).  When  used  as  an  interactive 
command shell and pressing the tab key, Bash automatically uses command line completion 
to match partly typed program names, filenames and variable names. 

Bash supports here documents just as the Bourne shell always has. However, since version 
2.05b Bash can redirect standard input (stdin) from a "here string" using the <<< operator.

Bash 3.0 supports in-process regular expression matching using a syntax reminiscent of 
Perl. 10

Components roles and features 

SSH

SSH is a protocol that can be used for many applications across many platforms including 
UNIX, Microsoft  Windows, Apple Mac and Linux.  Some of the applications  below may 
require features that are only available or compatible with specific SSH clients or servers. For 
example, using the SSH protocol to implement a VPN is possible, but presently only with the 
OpenSSH server and client implementation.

• For login to a shell on a remote host (replacing Telnet and rlogin)

• For executing a single command on a remote host (replacing rsh)

• For copying files from a local server to a remote host. See SCP, as an alternative for 
rcp

• In combination with SFTP, as a secure alternative to FTP file transfer

• In combination with rsync to backup, copy and mirror files efficiently and securely

• For port forwarding or tunneling a port (not to be confused with a VPN which routes 
packets between different networks or bridges two broadcast domains into one.).

10 http://en.wikipedia.org/wiki/Bash

7



• For using as a full-fledged encrypted VPN. Note that only OpenSSH server and client 
supports this feature.

• For forwarding X11 through multiple hosts

• For browsing the web through an encrypted proxy connection with SSH clients that 
support the SOCKS protocol.

• For  securely  mounting  a  directory  on  a  remote  server  as  a  filesystem on a  local 
computer using SSHFS.

• For automated remote monitoring and management of servers through one or more of 
the mechanisms as discussed above.

• For secure collaboration of multiple SSH shell channel users where session transfer, 
swap, sharing, and recovery of disconnected sessions is possible.11

Unison

Unison allows the same version of files to be maintained on multiple computing devices. 
In other words, when two devices are synchronized, the user can be sure that the most current 
version of a file is available on both devices, regardless of where it was last modified.

Unison  shares  a  number  of  features  with  tools  such  as  configuration  management 
packages (CVS, PRCS, Subversion, BitKeeper, etc.), distributed filesystems (Coda, etc.), uni-
directional  mirroring utilities  (rsync,  etc.),  and other synchronizers (Intellisync,  Reconcile, 
etc). However, there are several points where it differs:

• Unison runs on both Windows and many flavors of Unix (Solaris, Linux, OS X, etc.) 
systems. Moreover, Unison works across platforms, allowing you to synchronize a 
Windows laptop with a Unix server, for example.

• Unlike simple mirroring or backup utilities,  Unison can deal  with updates  to both 
replicas of a distributed directory structure. Updates that do not conflict are propagated 
automatically. Conflicting updates are detected and displayed.

• Unlike a distributed filesystem, Unison is a user-level program: there is no need to 
modify the kernel or to have superuser privileges on either host.

• Unison works between any pair of machines connected to the internet, communicating 
over either a direct socket link or tunneling over an encrypted ssh connection. It is 
careful  with  network  bandwidth,  and  runs  well  over  slow  links  such  as  PPP 
connections.  Transfers  of  small  updates  to  large  files  are  optimized  using  a 
compression protocol similar to rsync.

11 Article: GSW UTS Team Services Retrieved 2009-12-15

8



• Unison is resilient to failure.  It is careful to leave the replicas and its own private 
structures in a sensible state  at  all  times,  even in case of abnormal  termination or 
communication failures.

• Unison has a clear and precise specification.

• Unison is free; full source code is available under the GNU Public License.

Cron

Cron is used for automating tasks in the Linux/Unix Environment like:

• Using crontab to execute a shell script periodically.

• Automating network access using ssh and keys.

• Backing up a mysql database periodically.

• Doing a remote action based on a real time event.

9



Bash

Bash has several features that can be used:

• Command Line Options: Command line options that you can give to Bash.

• Bash Startup Files: When and how Bash executes scripts.

• Is This Shell Interactive? : Determining the state of a running Bash.

• Bash Built-ins: Table of built-ins specific to Bash.

• The Set Built-in: This built-in is so overloaded it deserves its own section.

• Bash Variables: List of variables that exist in Bash.

• Shell Arithmetic: Arithmetic on shell variables.

• Printing a Prompt: Controlling the PS1 string.

Use cases and scenario

The  system  presented  here  comes  in  handy  for  those  computer  users  who  work  on 
multiple files located on different stations and in different locations. The system is designed to 
synchronize a folder on multiple computers belonging to the same user but not all at once. 
The files will be redundant, meaning that they will be present on every computer that the 
person uses.

The first example

In the following we will present an example considering:

a) We have a computer user with three stations:

- Laptop computer (C1)

- Home desktop computer (C2)

- Computer at the work place (C3)

b) The goal of the project is for the person to have in any location the files(F1, F2, F3…) 
he is working on (documents, music files, pictures,…);

c) For the system to work we need at least 2 computers to be turned on at the same time;

10



d) We consider that the person will work on the files from one computer at a time;

e) All computers have network access and capabilities;

We start with:

• C1 has F1, F2, F3

• C2 has F4

• C3 has no user files

We end with:

• C1, C2, C3 will have all and the same files

Step 1

The computer user is at home (C1, C2) where he’s using F4 on his desktop computer. The 
laptop computer C1 is powered on when the Cron job will execute the Bash script and the 
folder synchronization will start. When the job is finished C1 and C2 will contain the same 
F1, F2, F3, F4 files. He powers down the C2 and goes to work.

Fig. 2 

Step 2

User arrives at the work place where the synchronization between C1 and C3 will result in 
C3 having all 4 files (F1 – F4). 

He creates a presentation (F5) on C3. Through the synchronization F5 will be transferred 
on laptop computer C1, that the user is going to use at a client meeting.

11



Fig. 3 

Step 3

Once he arrives home, after C1 and C2 synchronize he can edit file F5 in the comfort 
provided by the Desktop computer C2.

Fig. 4 

Second example

In this example we have a user with 4 computer stations as follows:

a) Computers have been assigned letters: A, B, C and D;

12



b) Files have numbers assigned: 1, 2, 3, 4;

c) All computers have network access and capabilities.

d) The goal is to synchronize files on all four machines over the network.

Fig. 5 

Each computer has 1 different file from the others: Computer A stores file 1, computer B 
stores file 2, Computer C stores file 3 and so on.

At the end of the synchronization steps all  four files  (1,  2,  3,  4)  are  stored on every 
computer (A – D).

13



Fig. 6 

Step 1

Computer A is synchronized with B, C and D in that particular order. The result is:

- A – has 1, 2, 3, 4;

- B – has 1, 2;

- C – has 1, 2, 3;

- D – has 1, 2, 3; 

Fig. 7

Step 2

Computer B has to synchronize with computer A, C, D in this particular order for every 
machine (A – D) to have the same file content when finished.

14



Conclusions

• The system can provide a easy to use method for synchronizing a “home” directory for 
example. 

• It is a secure way to synchronize files because of SSH support;

• It is scalable to any number of computer a user may have or want to work with;

• There is no overhead because the synchronization is made periodically due to the cron 
daemon;

• If one machine is compromised, it can be redrawn it’s corresponding SSH key;

Future developments

As future developments are concerned the system can provide:

• Multi user capabilities;

• File merging and conflict resolution;

• Windows support;

• A centralized way to handle keys and stations IP;

• Full User Interface;

15



References

http://en.wikipedia.org/

http://www.cis.upenn.edu/~bcpierce/unison/

http://www.cis.upenn.edu/~bcpierce/papers/index.shtml#File%20Synchronization

http://www.linuxjournal.com/article/7712 

http://www.cs.utah.edu/dept/old/texinfo/bash/features_toc.html

http://www.openssh.com/

http://www.ssh.com/

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

http://linux.die.net/man/5/crontab

http://www.computerhope.com/unix/ucrontab.htm

http://troy.jdmz.net/cron/

http://kevin.vanzonneveld.net/techblog/article/schedule_tasks_on_linux_using_crontab/

http://www.scrounge.org/linux/cron.html

Glossary

P2P – Peer to Peer

IP – Internet Protocol

TCP – Transmission Control Protocol

SSH – Secure Shell

X11 – X Window System

SFTP – Secure File Transfer Protocol

SCP – Secure Copy

CVS – Concurrent Versions System

PRCS – Project Revision Control System

16

http://www.scrounge.org/linux/cron.html
http://kevin.vanzonneveld.net/techblog/article/schedule_tasks_on_linux_using_crontab/
http://troy.jdmz.net/cron/
http://www.computerhope.com/unix/ucrontab.htm
http://linux.die.net/man/5/crontab
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.ssh.com/
http://www.openssh.com/
http://www.cs.utah.edu/dept/old/texinfo/bash/features_toc.html
http://www.linuxjournal.com/article/7712
http://www.cis.upenn.edu/~bcpierce/papers/index.shtml#File%20Synchronization
http://www.cis.upenn.edu/~bcpierce/unison/
http://en.wikipedia.org/

	Introduction
	Evolution
	Centralized node for synchronizing
	Decentralized synchronizing network
	Current architecture

	Architecture and applications
	Secure Shell (SSH) 
	Unison (file synchronizer)
	Cron
	Bash

	Components roles and features 
	SSH
	Unison
	Cron
	Bash

	Use cases and scenario
	The first example
	Second example

	Conclusions
	Future developments
	References
	Glossary

